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An efficient multidimensional scheme is constructed for solving the compressible
Euler equations. It is deduced from a centered scheme of the Lax–Wendroff type
by using a special time-step in the numerical flux, namely a matricial characteristic
time-step. This produces a compact second-order upwinding in a very simple way and
leads to accurate non-oscillatory solutions without limiters, entropy correction, or
other dissipative correction. The design principle is analysed for hyperbolic systems
of conservation laws. It is shown to be close to and less dissipative than a genuinely
multidimensional upwinding. Numerical applications are presented for subsonic,
transonic, and supersonic aerodynamic problems.c© 1998 Academic Press

1. INTRODUCTION

Over the past three decades, much progress has been made in the development of efficient
multidimensional Euler solvers for compressible flows. However, it is now clear that no
numerical method is perfectly suited to all types of flow problems. The design of an optimal
method depends on several conditions, such as the Mach number range, the steady or
unsteady flow character, and the role of boundary conditions. For instance, for calculating
an unsteady flow governed by interactions of fast and strong waves with discontinuities,
the most important features for the solver are robustness and good capturing properties
of moving strong shocks and contact discontinuities. In classical aerodynamics, the main
requirements are not exactly the same. Calculating a steady flow over an airfoil requires a
method able to converge quickly towards a steady-state and to give very accurate results
around a curved wall.

This work is devoted to the construction of numerical methods for aerodynamic appli-
cations, mostly in a steady transonic regime but also in subsonic or low supersonic regimes,
with possible extensions to slow unsteady problems, i.e., a problem evolving with a
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characteristic time much greater than the acoustic characteristic time (e.g., flow over an
oscillating airfoil). For this type of application, we consider second-order accurate finite-
volume methods on structured meshes. Since shock waves are not very strong and are steady
or nearly steady, it is possible to construct simple methods involving no flux limitation or
artificial viscosity correction and thus no tuning parameter. This means that we look for
schemes having an internal numerical dissipation sufficient to ensure stability and avoid
spurious oscillations but weak enough to preserve a high accuracy.

Space-centered methods usually require extra dissipation terms. One exception is the
implicit centered method proposed by the second author in the early eighties [10, 11, 14,
15]. Using a 3d point-stencil ind space dimension,1 this method is based on a kind of
Lax–Wendroff approximation and is unconditionally stable and dissipative in the sense of
Kreiss. It has been applied to two- and three-dimensional steady transonic flow problems
without any correction (see the review paper [12]). Since there is no limiter, the scheme
is really second-order accurate. The numerical shock profiles can be sharp and almost
non-oscillatory. However, the scheme produces some dependence of the numerical shock
structures on the time-step, or more precisely on the CFL number used to reach the steady
state. Furthermore, some correction should be applied in unsteady cases to prevent spurious
oscillations.

The alternative to centered differencing is upwinding. Upwind methods are generally
robust and non-oscillatory and can give CFL independent steady solutions. The basic Roe
scheme [20] is almost perfect for 1-D steady flow computation: it is first-order accurate
and total-variation diminishing (TVD), but it becomes second-order accurate at steady state
and produces shock profiles over one or two mesh cells only. Unfortunately, its straightfor-
ward extension to several space-dimensions does not preserve the second-order accuracy at
steady-state and spreads the discontinuities inclined with respect to the mesh lines. Several
approaches have been proposed to recover the second-order accuracy in most part of the
flow, for instance the MUSCL method of Van Leer [23], the anti-diffusive flux addition of
Harten [4], or the flux limitation of Sweby [22]. These approaches are accurate, but they
introduce some nonlinearities in the scheme, which is not favourable to derive a linearly
implicit version with a good convergence to the steady state. Besides, they split the spa-
tial approximation in each space direction. In recent years, many efforts have been done to
develop genuinely multidimensional upwind methods. Colella [1] has calculated the numer-
ical fluxes by solving the characteristic form of the full multidimensional equations at the
cell faces. A rotated Riemann solver has been proposed in the works of Levyet al. [17] and
Hirschet al. [6, 7] and some elementary wave models have been studied by Roe [21] and Fey
and Jeltsch [3]. The numerical schemes so constructed use no limiter and stay in linear form
when applied to a linear hyperbolic problem. They can sharply capture the discontinuities
aligned or not with the mesh lines, even though they remain first-order accurate.

The aim of the present paper is to develop a scheme for multidimensional problems that
collects together the advantages of the Lerat centered scheme and the Roe upwind scheme.
Since the calculation of steady flows is our main concern, we want to avoid the use of
limiters or other switch-like ingredients that can prevent the scheme from converging to the
steady-state by inducing limiting cycles. The new scheme that we want to construct should
satisfy the following properties:

1 More precisely, the method involves 1+ 2d2 points only, that is 3 points ford = 1, 9 points ford = 2 and 19
points ford = 3.
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• compactness (at most 3d points ind dimension)
• truly 2nd order accuracy at steady-state
• no need of limiters for transonic flow problems
• stability and efficiency for large CFL numbers
• numerical steady solutions not depending on the CFL number.

The basic idea relies on the observation that in 1-D the explicit stage of the Lerat scheme,
i.e., the classical Lax–Wendroff scheme, can be easily transformed into the Roe scheme
by using a special time-step in the numerical flux, namely a matricial characteristic time-
step. Since the Roe scheme is an excellent candidate for calculating 1-D steady flows but
is difficult to extend to multidimensional problems with a second-order accuracy, we will
consider the multidimensional Lerat scheme and modify its time-step for producing an
upwinding effect in a simple way. As it will be shown, this can be done by keeping the good
features of both schemes, that is, ensuring all the above properties.

The present paper is organized as follows. Section 2 presents the idea of upwinding
through the characteristic time-step in one space-dimension. Section 3 discusses the gen-
eralization of this idea to scalar two-dimensional problems and analyzes some numerical
difficulties. It is notably found that, for the stability reasons, the straightforward extension
direction by direction cannot be used. The correct treatment turns out to be quite simple
since it comes to use the smallest of two 1-D characteristic time-steps in a Lax–Wendroff
formulation. Section 4 shows that this treatment is close to and less dissipative than a gen-
uinely multidimensional upwinding. Section 5 extends the idea to 2-D hyperbolic systems of
conservation laws. Then, Section 6 presents the detailed space-approximation together with
an implicit time-discretization leading to unconditional linear stability. Finally, numerical
applications of the new scheme are presented in Section 7 for two-dimensional subsonic,
transonic, and supersonic flow problems.

2. UPWINDING THROUGH A CHARACTERISTIC TIME-STEP IN 1-D

2.1. Lax–Wendroff and Roe Schemes

Let us begin with the scalar conservation law,

wt + f (w)x = 0 (1)

and consider difference schemes in conservative form,

1w j = −σ
(
h j+ 1

2
− h j− 1

2

)
, (2)

wherew j =wn
j denotes the numerical solution at time levelt = n1t and pointx= j δx,

σ is the step ratio

σ = 1t

δx
,

h j+(1/2) is the numerical flux at( j + 1
2)δx and1 is the time-difference operator,

1w j = wn+1
j − wn

j .



            

448 HUANG AND LERAT

Introducing also the spatial operators,

(δv) j+ 1
2
= v j+1− v j

(µv) j+ 1
2
= 1

2
(v j+1+ v j )

(3)

the Lax–Wendroff centered scheme [9] and the Roe upwind scheme [20] can be expressed
in form (2) with numerical fluxes respectively defined as

h j+ 1
2
= hLW

j+ 1
2
=
(
µ f − 1

2
σ ARδ f

)n

j+ 1
2

(4)

h j+ 1
2
= hR

j+ 1
2
=
(
µ f − 1

2
|AR|δw

)n

j+ 1
2

, (5)

whereAR denotes the Roe average of the flux derivativeA= d f/dw, i.e., in the present
scalar case,

(AR) j+ 1
2
=
{
(δ f ) j+ 1

2
/(δw) j+ 1

2
if δw j+ 1

2
6= 0

A(w j ) otherwise.

It is well known that the Lax–Wendroff scheme (2), (4) is second-order accurate and may
produce spurious oscillations around discontinuities. Its steady solutions satisfy(

µ f − 1

2
σ AR δ f

)
j+ 1

2

= const.

and thus depend on the time-step or more precisely on the CFL number,

CFL= max
j

(
σ |AR| j+ 1

2

)
.

Spurious oscillations increase as the CFL number decreases and the scheme tends towards
the simple centered scheme as the CFL number goes to zero. An efficient way to get rid
of these oscillations is to use large CFL numbers. This can be done by adding to the Lax–
Wendroff scheme the Lerat implicit stage [10] as

1w j − 1

2
σ 2δ
[
A2

Rδ(1w)
]

j
= −σ(δhLW) j . (6)

Scheme (6) is second-order accurate, always linearly stable, and givessteady solutions
without oscillations for CFL numbers large enough.

Let us now turn to the Roe scheme (2) and (5). In general, this scheme is first-order
accurate, but at steady-state it reduces to(

δhR

δx

)
j

= 0

and becomessecond-order accurate, because the numerical flux (5) can also be written as

hR
j+ 1

2
=
(
µ f − 1

2
sgn(AR)δ f

)n

j+ 1
2



              

UPWINDING THROUGH A CHARACTERISTIC TIME-STEP 449

so that for any smooth solution off (w)x = 0, we have(
δ f

δx

)
j+ 1

2

= ( fx) j+ 1
2
+O(δx2) = O(δx2)

and (
δhR

δx

)
j

=
(
δµ f

δx

)
j

+O(δx2) = ( fx) j +O(δx2).

Moreover the exact steady solution is a solution of the Roe scheme in the present 1-D case,
but all that does not remain true in several space-dimensions.

The Roe scheme is linearly stable and TVD for CFL≤ 1. Contrary to the Lax–Wendroff
scheme, its steady solution does not depend on the CFL number. Shock profiles are mono-
tonic and spread over one or two mesh cells.

2.2. Transforming One into the Other

The Lax–Wendroff scheme can be easily transformed into the Roe scheme by use of
a special time-step called the characteristic time-step1tc. The latter represents the time
necessary for covering the mesh sizeδx at the characteristic speedA. More precisely, it is
defined on the cell face( j + 1

2) δx by

1tc
j+ 1

2
|AR| j+ 1

2
= δx. (7)

By replacing the time-step1t by1tc
j+(1/2) in the Lax–Wendroff numerical flux (4) but not

in the conservative form (2), one gets the modified numerical flux

(
hLW

j+ 1
2

)c =
(
µ f − 1

2
σ c AR δ f

)n

j+ 1
2

,

where

σ c
j+ 1

2
=
1tc

j+ 1
2

δx
.

Using (7) the above expression reads

(
hLW

j+ 1
2

)c =
(
µ f − 1

2
sgn(AR) δ f

)n

j+ 1
2

= hR
j+ 1

2
,

where sgn denotes the sign function. Thus, in this simple 1-D situation, a second-order
centered scheme has been perfectly transformed into an upwind scheme owing to the
characteristic time-step and this transformation haspreserved the second-order accuracy at
steady-state.

The idea of a characteristic time-step seems to have been first introduced in 1990 by
Powell and Van Leer [19]. The purpose was different since it concerns the speed up of the
convergence to the steady-state of an upwind scheme (the characteristic time-step was used
in (2), i.e., was applied to the unsteady term). The characteristic time-step has been also
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considered by Mortonet al. [18] for a cell-vertex scheme in one dimension. In the present
paper, our aim is to take benefit of the relationship between the Lax–Wendroff and Roe
schemes for investigating a simple upwinding technique able to give steady solutions with
a second-order accuracy. This follows a first work that we presented at the ECCOMAS’94
Conference [8].

Note that the characteristic time-step definition (7) corresponds to a local CFL number
equal to one in the whole mesh. Such a small CFL number could seem to be unfavourable
to a fast convergence to the steady-state. This is not the case because the characteristic
time-step does not apply on the conservative form (2), i.e., on the discretisation of the
unsteady termwt . It only applies on the time-step involved in the Lax–Wendroff numerical
flux. As we will see in Section 6, this allows the development of efficient implicit versions
of the method with large (classical) CFL numbers. Obviously, a future improvement of the
method could consist in using a second characteristic time-step associated with a large local
CFL number for the unsteady term. For the system case, this could be viewed as a kind of
preconditioning.

2.3. Characteristic Time-Step for 1-D Hyperbolic Systems

Consider now a hyperbolic system of conservation laws in the form (1). The Lax–
Wendroff and Roe schemes read as above except thatw and f (w) are now vector-valued
and the Roe average(AR) j+(1/2) becomes a matrix (see [20]). Defining the characteristic
time-step by the following analogue of (7)

1tc
j+ 1

2
|AR| j+ 1

2
= δx I (8)

or by

σ c
j+ 1

2
|AR| j+ 1

2
= I , (9)

whereI is an identity matrix, the relationship between both schemes is unchanged, except
1tc

j+(1/2) andσ c
j+(1/2) are now matrix-valued.

Note that the characteristic time-step matrix is not defined when the Roe average has a
zero eigenvalue (for instance at a sonic point), but the useful quantities, that is, the products
on the left-hand side of (8) or (9), are still well defined.

3. CHARACTERISTIC TIME-STEP FOR 2-D SCALAR EQUATIONS

3.1. A Simple Extension Direction by Direction

For the 2-D scalar equation

wt + f (w)x + g(w)y = 0 (10)

the Lax–Wendroff time discretization can be written as

1w

1t
+ f (w)x + g(w)y = P(w) (11)
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with

P(w) = 1

2
[1t A( fx + gy)]x + 1

2
[1t B( fx + gy)]y, (12)

whereA = d f/dw andB = dg/dw. The time-step has been inserted inside the brackets to
get conservation in case1t would not be uniform. Space discretization is purely centered.

In addition to ensuring the second-order accuracy in time, the operatorP corrects the
destabilizing effect of the Euler forward approximation1w/1t . To check that the operator
P does produce a dissipative effect, we rewrite it as

P(w) = 1

2
[1t (A2wx + ABwy)]x + 1

2
[1t (B Awx + B2wy)]y

and consider the associated quadratic form

Q = 1t

2
(A2ξ2+ 2ABξη + B2η2)

= 1

2
Xt M X

with

X =
[
ξ

η

]
, M = 1t

[
A2 AB
AB B2

]
.

Dissipativity in a broad sense of the operatorP means that the quadratic formQ is non-
negative definite, i.e., the eigenvalues of the symmetric matrixM are positive or null. Here,
these eigenvalues are precisely1t (A2+ B2) and 0.

The straightforward way to transform the Lax–Wendroff scheme by modifying the time-
step in the operatorP is to proceed direction by direction, that is, to define two characteristic
time-steps similarly as in 1-D:

1tc
1|A| = δx

1tc
2|B| = δy.

(13)

The semi-discrete expression of the modified scheme stays in form (11) with the new
right-hand side,

P′(w) = δx

2
[sgn(A)( fx + gy)]x + δy

2
[sgn(B)( fx + gy)]y.

The corresponding quadratic form is

Q′ = 1

2
Xt M ′X

with

M ′ =
[
δx|A| C

C δy|B|
]
,
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where

C = 1

2
sgn(AB)(δx|B| + δy|A|).

Eigenvalues ofM ′ are non-negative if and only if

(δx|B| − δy|A|)2 ≤ 0.

Therefore the new operator is no longer dissipative, except if

|A|
δx
= |B|
δy
. (14)

This very special case corresponds to an advection along one of the mesh diagonals. In
general, the operatorP′ is not dissipative and it is easy to show that the fully discrete
scheme gets unstable.

3.2. A Better Extension

First we note that the definition (13) and the condition (14) yield1tc
1 =1tc

2, i.e., the equal-
ity of the two characteristic time-steps. Generally speaking, consider the Lax–Wendroff
operatorP with two arbitrary time-steps1t1 and1t2, that is,

P′′(w) = 1

2
[1t1A( fx + gy)]x + 1

2
[1t2B( fx + gy)]y.

Dissipativity of P′′ is tantamount to

[(1t1−1t2)AB]2 ≤ 0

and thus to1t1 = 1t2. In other words, stable modifications can only be obtained by using
a single time-step in the 2-D Lax–Wendroff operator.

To get stability, we now use an unique time-step1tc and relax the constraints (13) as

1tc|A| = δx8
1tc|B| = δy9. (15)

The operatorP in (11) becomes

Pc(w) = δx

2
[8 sgn(A)( fx + gy)]x + δy

2
[9 sgn(B)( fx + gy)]y. (16)

Let us now determine adequate coefficients8 and9. First, to define an unique1tc from
the two relations (15), the following compatibility condition should hold:

|A|
δx
9 = |B|

δy
8. (17)

For stability reasons, we require

8 ≥ 0 and 9 ≥ 0. (18)
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Consider now a one-dimensional problem. WhenA 6= 0 andB= 0, condition (17) yields
9 = 0 and the operator (16) reduces to

δx

2
[8|A|wx]x.

Similarly, whenA= 0 andB 6= 0, the operator becomes

δy

2
[9|B|wy]y.

Therefore, in order that the scheme reduce to the Roe scheme for 1-D problems, we prescribe

(B = 0⇒ 8 = 1) and (A = 0⇒ 9 = 1). (19)

Finally, we look for functions8 and9 that satisfy the constraints (17)–(19) and minimize
the distance between the new scheme and the Roe scheme, i.e., minimize the quantity

|8− 1| + |9 − 1|. (20)

This optimization problem is solved by considering8 and9 as functions of the advection
direction

8 = 8(α), 9 = 9(α),

where

α = δx|B|
δy|A| . (21)

In terms of the parameterα, the constraints (17)–(19) respectively read

9(α) = α8(α)
8(α) ≥ 0

8(0) = 1 and 8(α) ∼ 1/α, asα→∞.
(22)

Quantity (20) is optimized for each value of the variableα, i.e., for a givenα > 0, we look
for z= 8(α) ≥ 0 minimizing

I (z) = |z− 1| + |αz− 1|.

By considering the cases 0< α ≤ 1 andα > 1, the optimal function8 is found to be

8(α) =
{

1 if 0 < α ≤ 1
1
α

if α > 1.

and, consequently

9(α) =
{
α if 0 < α ≤ 1

1 if α > 1.
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Let us emphasize thatα < 1 (resp.α > 1) expresses that|A|/δx is greater (resp. lower)
than|B|/dy i.e., that the advection direction is between thex-direction (resp.y-direction)
and a mesh diagonal; in other words, thex-direction (resp.y-direction) is dominant.

Now, observe that the optimal solution can also be written as

8 = min

(
1,

1

α

)
= min

(
1,
δy|A|
δx|B|

)
9 = min(1, α) = min

(
1,
δx|B|
δy|A|

) (23)

so that, from (15), it corresponds to

1tc = min

(
δx

|A| ,
δy

|B|
)
= min

(
1tc

1,1tc
2

)
. (24)

The 2-D characteristic time-step is therefore thesmallest of the two 1-D characteristic time-
steps. It is the time for a particle moving at speed (A, B) to cross a mesh cell starting from
a vertex.

4. PRESENT APPROACH COMPARED TO GENUINELY

MULTIDIMENSIONAL UPWINDING

It is well known that for many upwind schemes on Cartesian grids, the numerical dissi-
pation is minimal when the advection velocity is parallel to one of the mesh directions.

Consider the linear scalar model

wt + Awx + Bwy = 0, (25)

whereAandB are two constants. Suppose that the advection velocity normC= (A2+B2)1/2

is not null and define a new coordinate system(x′, y′) by rotating the basic frame with an
angleθ ∈ [0, 2π),

x′ = x cosθ + y sinθ

y′ = −x sinθ + y cosθ.
(26)

In the new coordinates, Eq. (25) becomes

wt + A′wx′ + B′wy′ = 0, (27)

where

A′ = Acosθ + B sinθ

B′ = −Asinθ + B cosθ.

By choosing the angleθ0 such that

cosθ0 = A

C
and sinθ0 = B

C
,
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Eq. (27) reduces to

wt + Cwx′ = 0. (28)

Let us now apply the Roe scheme to Eq. (28) with a stepδx′. SinceC> 0, this 1-D
scheme can be simply expressed as

1w

1t
+ Cwx′ = δx′

2
Cwx′x′ , (29)

where the derivatives should be replaced by centered differences.
For the choice of the stepδx′, we require that it varies continuously betweenδx (when

B = 0) andδy (whenA = 0). Using (26), we take

δx′ = |cosθ0|δx + |sinθ0|δy. (30)

Expressing scheme (29) in the original coordinates (x, y), we have

wx′ = cosθ0wx + sinθ0wy = 1

C
(Awx + Bwy)

wx′x′ = 1

C2
[ A(Awx + Bwy)x + B(Awx + Bwy)y].

Therefore, scheme (29) corresponds to

1w

1x
+ Awx + Bwy = P0(w), (31)

where

P0(w) = δx

2
[80 sgn(A)( fx + gy)]x + δy

2
[90 sgn(B)( fx + gy)]y (32)

with f = Aw, g = Bw, and

80 = δx′

δx

|A|
C
= |cosθ0|

(
|cosθ0| + |sinθ0| δy

δx

)
= 1+ αr 2

1+ α2r 2

90 = δx′

δy

|B|
C
= α80,

whereα is still defined by (21) andr is the mesh aspect-ratio,

r = δy

δx
.

We observe that the genuinely multidimensional scheme (31)–(32)—in which the space
derivatives should be replaced by centered differences—is similar to the scheme (11) and
(16) constructed in the previous section from characteristic time-stepping. The only differ-
ence lies in the coefficients in the right-hand side. In place of the coefficient pair(8,9),
we now have(80, 90). It turns out that the new coefficients satisfy the three constraints
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FIG. 1. Coefficients8 (in full line) and80 versus the orientationα, for the mesh aspect-ratiosr = 0.5, 1,
and 2.

(22) prescribed for the old ones and thus are close to them. Furthermore, it is easy to check
that

8 ≤ 80, 9 ≤ 90

8 = inf
r≥0
80, 9 = inf

r≥0
90.

The coefficient8 versus the orientationα is shown in Fig. 1 and compared to the coefficient
80 for three values of the step ratior . Thus, the scheme (11) and (16), deduced from a Lax–
Wendroff formulation using a characteristic time-step, is close to andless dissipativethan
the multidimensional upwind scheme (31) and (32). Both schemes are really second-order
accurate at steady-state owing to the mixed derivatives in their dissipative operatorP or P0.

5. EXTENSION TO 2-D HYPERBOLIC SYSTEMS

For extending the present approach to a general two-dimensional hyperbolic system of
conservation laws, the key point is of course to define the characteristic time-step1tc. In
one space-dimension, a matricial1tc has easily been defined by (8). For a two-dimensional
scalar problem, the correct1tc is given by (24). Consider now Eq. (10) where the state
w and the fluxesf (w) and g(w) in the x- and y-directions are now vector-valued. A
simple situation occurs when the flux Jacobian matricesA(w) andB(w) commute. In this
case, they can be simultaneously diagonalized and we are brought back to the scalar case.
Unfortunately, for the Euler equations,A(w) andB(w) do not commute and the extension
is not so direct.

For the general case, we present here an approximate extension that results in an easy
implementation. For the sake of simplicity, we choose the matrices8 and9 such that:
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(i) the8 commute withA and9 with B,

8A = A8

9B = B9
(33)

(ii) the eigenvalues of8 and9 are defined by the following simple generalization of
(23),

λ
(i )
8 = min

(
1,
δy
∣∣λ(i )A

∣∣
δxm(B)

)

λ
(i )
9 = min

(
1,
δx
∣∣λ(i )B

∣∣
δym(A)

)
,

(34)

whereλ(i )A denotes thei th eigenvalue ofA,

m(A) = min
i

∣∣λ(i )A

∣∣
and the same forλ(i )B andm(B).

Let alsoTA (resp.TB) be the matrix whose column vectors are the right eigenvectors of
A (resp.B), so that

A = TA3AT−1
A

B = TB3BT−1
B ,

where, for any square matrixM , 3M =Diag[λ(i )M ]. Owing to (33), the matrices8 and9
can be expressed as

8 = TA38T−1
A

9 = TB39T−1
B .

The corresponding characteristic time-step matrices are still defined as

1tc
8|A| = δx8

1tc
9 |B| = δy9

but they are no longer the same. For the first one, we get

1tc
8TA3|A|T−1

A = TA Diag

[
min

(
δx,

δy
∣∣λ(i )A

∣∣
m(B)

)]
T−1

A

and thus

1tc
8 = TA Diag

[
min

(
δx∣∣λ(i )A

∣∣ , δy

m(B)

)]
T−1

A (35)
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which expresses that this time-step matrix has the same eigenvectors asAand its eigenvalues
are similar to (24), except thatδy/|λ(i )B | is replaced byδy/m(B), the greatest time-step in
the y-direction. Similarly, we obtain

1tc
9 = TB Diag

[
min

(
δx

m(A)
,
δy∣∣λ(i )B

∣∣
)]

T−1
B . (36)

Expressions (35) and (36) can also be written in the condensed form

1tc
8 = min(δx|A−1|, δyρ(B−1)I )

(37)
1tc

9 = min(δxρ(A−1)I , δy|B−1|),

whereρ denotes the spectral radius of a matrix.
In the particular case whereB = 0 (1-D problem),1tc

8 reduces to the previous charac-
teristic time-step matrix

1tc = δx|A|−1.

In the 2-D scalar case, from (37) we recover

1tc
8 = 1tc

9 = min

(
δx

|A| ,
δy

|B|
)
.

For the practical application to a 2-D hyperbolic system, the method is expressed as

1w

1t
+ f (w)x + g(w)y = Pc(w), (38)

where the operatorPc is defined by (16), that is,

Pc(w) = δx

2
[8′( fx + gy)]x + δy

2
[9 ′( fx + gy)]y, (39)

with the coefficient matrices

8′ = 8 sgn(A) = TA Diag
[
λ
(i )
8′
]
T−1

A
(40)

9 ′ = 9 sgn(B) = TB Diag
[
λ
(i )
9 ′
]
T−1

B ,

where

λ
(i )
8′ = sgn

(
λ
(i )
A

)
λ
(i )
8

(41)
λ
(i )
9 ′ = sgn

(
λ
(i )
B

)
λ
(i )
9 .

6. FULLY DISCRETE IMPLICIT SCHEME

Let us now present the fully discrete form of the method, based on a centered approxi-
mation of (38)–(41).
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6.1. Explicit Stage

To ensure stability and dissipation in the sense of Kreiss, we adopt the Lerat formulation
of the Lax–Wendroff method (see [12]). It involves a predictor step for each space-direction.

Similarly as in 1-D, we introduce the following discrete operators for a mesh function
vn

j,k defined att = n1t, x = j δx, andy = kδy on a Cartesian mesh:

1v j,k = vn+1
j,k − vn

j,k

(δ1v) j+ 1
2 ,k
= vn

j+1,k − vn
j,k

(δ2v) j,k+ 1
2
= vn

j,k+1− vn
j,k

(µ1v) j+ 1
2 ,k
= 1

2

(
vn

j+1,k + vn
j,k

)
(µ2v) j,k+ 1

2
= 1

2

(
vn

j,k+1+ vn
j,k

)
.

The two predictors are defined on the cell interface as

(p1) j+ 1
2 ,k
=
(
δ1 f + δx

δy
µ1δ2µ2g

)n

j+ 1
2 ,k

(42)

(p2) j,k+ 1
2
=
(
δy

δx
µ2δ1µ1 f + δ2g

)n

j,k+ 1
2

.

Using these predictors, the method (38)–(41) is discretized as

1w j,k = −1t

(
δ1h1

δx
+ δ2h2

δy

)
j,k

(43)

with the numerical fluxes

(h1) j+ 1
2 ,k
=
(
µ1 f − 1

2
8′p1

)n

j+ 1
2 ,k

(44)

(h2) j,k+ 1
2
=
(
µ2g− 1

2
9 ′p2

)n

j,k+ 1
2

,

where the matrices8′ and9 ′ are computed from (40)–(41) and (34) using Roe averages at
( j + 1

2, k) and( j, k+ 1
2).

The above scheme makes use of 9 points only (19 points in 3-D). It is trulysecond-
order accurate at steady-state, because for a smooth solutionw of

f (w)x + g(w)y = 0,

andO(δy) = O(δx), one obtains

(p1) j+ 1
2 ,k
= δx( fx + gy) j+ 1

2 ,k
+O(δx3) = O(δx3)

(p2) j,k+ 1
2
= δy( fx + gy) j,k+ 1

2
+O(δx3) = O(δx3)
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FIG. 2. Stability domains (inside the closed curve in bold line) in terms ofȦ = 1t
δx

A and Ḃ = 1t
δy

B. (a)
Lax–Wendroff scheme. (b) Roe scheme (1st order). (c) Present explicit scheme.

and, by substitution into (44),(
δ1h1

δx
+ δ2h2

δy

)
j,k

=
(
δ1µ1 f

δx
+ δ2µ2g

δy

)
j,k

+O(δx2)

= ( fx + gy) j,k +O(δx2).

But, contrary to the original Lax–Wendroff scheme, the numerical steady solution of the
present scheme does not depend on the time-step used.

The stability of the present explicit scheme has been studied numerically for a 2-D
scalar problem with a constant advection velocity (A, B). Its stability domain is shown
in Fig. 2 and compared to those of Lax–Wendroff and Roe schemes. In this figure, the
horizontal axis representṡA= 1t

δx A and the vertical axiṡB= 1t
δy B. The stability domain of

the scheme (43)–(44) is slightly larger than for the Lax–Wendroff scheme and very close
to the stability domain of the first-order Roe scheme. It can be approximately expressed by
the CFL criterion

|Ȧ| + |Ḃ| ≤ 1,

that is,

1t

( |A|
δx
+ |B|
δy

)
≤ 1.

A sufficient stability condition can also be written as

1t

[( |A|
δx

)2

+
( |B|
δy

)]1/2

≤
√

2

2
.

6.2. Implicit Scheme

For improving the efficiency of steady-state calculations, we add to the above scheme a
suitable implicit stage. By applying the Euler backward time-discretization, we transform
the scheme (42)–(44) into(

1w

1t
+ δ1hn+1

1

δx
+ δ2hn+1

2

δy

)
j,k

= 0

in which the numerical fluxes are now taken at time(n+ 1)1t . After a linearization, this
implicit scheme takes the form

(H1w) j,k = 1wexpl
j,k , (45)
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where the right-hand side orexplicit stageis given by (42)–(44) andH is the linear implicit
operator.

Now we make two simplifications of the operatorH. First, we drop the approximation
of the mixed second-order derivatives and then we replace the eigenvalues of8 and9 by
their upper bound in (34), i.e.,

λ
(i )
8 = λ(i )9 = 1.

Therefore, the matrices8 and9 are both reduced to the identity matrix and

H = I +H1+H2, (46)

with the 1-D difference operatorsH1 andH2 given by

H11w = 1t

δx

[
µ1(ARδ11w)− 1

2
δ1(|AR|δ11w)

]
(47)

H21w = 1t

δy

[
µ2(BRδ21w)− 1

2
δ2(|BR|δ21w)

]
.

The implicit stage (46) is then of Harten type [5]. It involves only three points by direction.
The implicit scheme (42)–(44), (45)–(47) has been shown to be always linearly stable.

The implicit stage can be solved either by ADI factorization or by alternate line-relaxation of
Jacobi or Gauss–Seidel type following the same lines as in [2] for the Lerat scheme. All these
techniques lead to the solution of algebraic linear systems associated to block-tridiagonal
matrices at each time iteration.

In practice, applying a line-relaxation technique allows the use of CFL numbers up to 1000
in our 2-D calculations. On the contrary, applying an ADI factorization yields convergence
rate limitations as for many other schemes. The CFL numbers used here with the factored
scheme are of the order of 10.

7. NUMERICAL APPLICATIONS

The present method is validated through the computation of various steady and slow
unsteady compressible flows governed by the two-dimensional Euler equations

wt + f (w)x + g(w)y = 0

with

w=


ρ

ρu
ρv

ρE

 , F =


ρu

ρu2+ p
ρuv

(ρE + p)u

 , G=


ρv

ρuv
ρv2+ p
(ρE + ρ)v

 ,
whereρ is the density,p the pressure,u andv the Cartesian components of the fluid velocity,
andE the specific total energy defined by

E = e+ 1

2
(u2+ v2),
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FIG. 3. The 124× 32 mesh for the NACA0012 airfoil.

e being the specific internal energy. The pressure is related toρ ande by the equation of
state,

p = (γ − 1)ρe

with γ = 1.4 in our calculations.
The scheme is applied on curvilinear meshes using a cell-centered finite-volume formu-

lation. No limiter, entropy correction, or dissipative term is added to the present method.

7.1. Transonic Flow over an Airfoil

We first consider the steady transonic flow over the NACA0012 airfoil at Mach number
0.85 and zero angle of attack. The flow is symmetric and computed in the upper half domain
on a C-mesh composed of 124× 32 cells (see Fig. 3). On the airfoil, the slip condition is
prescribed and the pressure is deduced from a conservative integral form of the momentum
equation projected on the normal to the wall.

The computation starts from an uniform flow and is run with a local time-step associated
with a constant and uniform CFL number. The convergence history of the present implicit
method is shown in Fig. 4, using ADI factorization or line Gauss–Seidel relaxation (ALGS)

FIG. 4. Convergence histories for the transonic flow over the NACA0012 airfoil (log10 of the L2-residual in
terms of time-iterations).
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FIG. 5. Pressure contours,1p = 0.04 (left, Lerat scheme; right, present scheme).

in the implicit stage. TheL2 residual is reduced by 6 orders of magnitude in about 1000
iterations with ADI ( CFL= 20) and 500 iterations with ALGS (CFL= 500).

Concerning the steady numerical solutions, the pressure contours are shown in Fig. 5
and compared to those of the implicit Lerat scheme of Lax–Wendroff type. Both results
are very similar, which confirms the second-order accuracy of the present method. Figure 6
compares the entropy contours of the two schemes and reveals a better behaviour for the
present method. This is also apparent in Fig. 7 showing the solution on the airfoil, namely
the pressure coefficient

Cp = p− p∞
(1/2)γ p∞M2∞

and the entropy deviation

6 = s− s∞
s∞

,

wheres= p/ργ and the subscript∞ refers to the freestream. The present scheme gives a
lower entropy error upstream of the shock and a monotonic numerical shock profile over
two mesh cells only.

Moreover, the present scheme has a steady solution that does not depend on the CFL
number used in the convergence process, contrary to the Lerat scheme (see Figs. 8 and 9).

7.2. Supersonic Flow over an Ellipse

The second application concerns the supersonic flow over an ellipse of aspect-ratio 2.4 at
Mach number 3 without incidence. This supersonic flow is computed over an half domain
on the 32× 32 mesh shown in Fig. 10.

The present scheme has been applied similarly as for the transonic flow problem, except
that at inflow and outflow, supersonic boundary conditions are used. The numerical solution
is shown in Figs. 11 and 12. The detached shock is well captured: it is sharp and non-
oscillatory.

FIG. 6. Entropy contours,1s= 0.0005 (left, Lerat scheme; right, present scheme).
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FIG. 7. Pressure coefficient and entropy deviation on the profile (left, Lerat scheme; right, present scheme).

FIG. 8. Lerat scheme: shock profiles depend on the CFL numbers.

FIG. 9. Present scheme: shock profiles do not depend on the CFL numbers.
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FIG. 10. The 32× 32 mesh for the ellipse.

FIG. 11. Pressure contours,1p = 0.05.

FIG. 12. Pressure coefficient and entropy deviation on the symmetry axis and the ellipse,M∞ = 3.
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FIG. 13. The 64× 32 mesh for the cylinder.

7.3. Subsonic Flow over a Circular Cylinder

We now consider a subsonic flow over a circular cylinder at Mach number 0.38. In
these conditions, the maximal Mach number on the cylinder is slightly lower than one. The
computational domain and the 64× 32 mesh are shown in Fig. 13. The solution given by
the present scheme is displayed in Figs. 14 and 15. The upstream/downstream symmetry is
perfectly recovered and the entropy deviation is very low (smaller than 3× 10−4).

7.4. Transonic Flow in a Compressor Cascade

The present scheme has also been applied to internal flows in turbomachinaries. Here,
we present a transonic flow calculation in the compressor cascade shown in Fig. 16. The
computational domain is bounded by an inlet, an outlet, two blades, and four cut-lines on
which periodicity conditions are prescribed. The mesh is composed of 120× 30 cells.

At the inlet boundary, the Mach number is 1.301 and the incidence is about 63.4 degrees.
At the outlet boundary, the pressure is prescribed. It is equal to 44% of the upstream
stagnation pressure. On the two blades, the slip condition is enforced. The periodic boundary
condition on the cut-lines is viewed as a matching condition between two subdomains and
treated similarly as in [16].

Starting from an uniform flow, the convergence history of the present method is shown in
Fig. 17, using ADI factorization or ALGS relaxation in the implicit stage. TheL2 residual

FIG. 14. Pressure contours,1p = 0.02.
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FIG. 15. Pressure coefficient and entropy deviation on the symmetry axis and the cylinder,M∞ = 0.38.

is reduced by 6 orders of magnitude in about 1600 iterations with ADI (CFL= 10) and
only 70 iterations with ALGS (CFL= 1000). To reach this residual, the CPU time for the
relaxed method is about 16.4 seconds on a CRAY J916 computer, which is nearly ten times
less than with the factored method.

FIG. 16. The 120× 30 mesh for the compressor cascade.
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FIG. 17. Convergence histories for the compressor cascade.

The Mach number contours are presented in Fig. 18 and compared to those obtained by
a first-order upwind scheme [20] on the same mesh, also using 3 points per space direction.
Owing to its real second-order accuracy, the present scheme gives a much better resolution
of the main features of the flow: the weak compression around the leading edge, theλ-shock,
and the skewed slip line.

7.5. Slow Unsteady Flow around a Moving Airfoil

We finally consider a slow unsteady problem, that is, the flow over the NACA0012 airfoil
in plane motion of great amplitude. The freestream Mach number is 0.536 and there is no
incidence. The airfoil moves in the horizontal direction at the speed

u0 = −M0a∞ sinkt, (48)

whereM0 = 0.327, k = 0.185 (reduced frequency), anda∞ denotes the freestream sound
speed. This is a 2-D simulation of the flow conditions over a section of a helicopter rotor
blade near the tip of the blade, studied by Lerat and Sides in 1979 [13]. The Mach number
relative to the airfoil has the time-evolution

Mr,∞ = M∞ + M0 sinkt.

During the first half-cycle of the periodic evolution (blade forward motion), the relative
Mach number goes from 0.536 up to 0.863 and down again to 0.536. This yields the
formation of a shock wave travelling first downstream, then rapidly upstream and vanishing
before reaching the leading edge. During the second half-cycle,Mr,∞ remains lower than
0.536 and the flow regime is subsonic.

This unsteady problem is solved on a 94×24 mesh moving with the airfoil (see Fig. 19).
The Euler equations are written in a frame attached to the mesh but still use the components
of the fluid absolute velocity in the absolute frame, i.e.,

wt + [ f (w)− u0w]x + g(w)y = 0,
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FIG. 18. Mach number contours(1M = 0.05) in the compressor cascade. (a) First-order upwind scheme.
(b) Present 3× 3-point scheme.

wherew, f (w), andg(w) are defined as previously. The slip boundary condition on the
moving airfoil takes the form

(V − V0) · n = 0,

whereV is the fluid absolute velocity,V0 = (u0, 0)T , andn is a normal to the airfoil. For this
unsteady flow calculation, a conservative treatment in time is necessary. This is not the case
for the implicit stage (45)–(47) because of the termµ1(ARδ1·) in the difference operator



        

FIG. 19. The 94× 24 mesh for the moving NACA0012 airfoil.

FIG. 20. Pressure contours around the moving airfoil(1p = 0.075) calculated with CFL= 12. (a)kt = 60◦

(Mr,∞ = 0.819). (b)kt = 120◦ (Mr,∞ = 0.819). (c)kt = 150◦ (Mr,∞ = 0.699).
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H1 andµ2(BRδ2·) in H2. To restore conservation, we replace these terms byδ1(ARµ1·)
andδ2(BRµ2·), respectively, which does not modify the linear properties of the scheme.

The initial condition corresponds to a steady flow over the airfoil atM∞ = 0.536 and the
solution is advanced using an uniform time-step (CFLmax= 12). Figure 20 shows the isobar
lines calculated at the timeskt = 60◦, 120◦, and 150◦ during the first period. Note that the
first two instants give the same relative Mach number(Mr,∞= 0.819); nevertheless the
flow is subsonic forkt = 60◦ and transonic forkt= 120◦. The formation and the excursion
of the shock wave are well represented by the present method and there is no excessive
dissipation even though the formal order of accuracy in time is only one.

8. CONCLUSIONS

An very simple multidimensional upwind scheme has been proposed for solving the
Euler equations. It is deduced from the Lax–Wendroff type approximation by introducing
some matricial time-step. Involving 3× 3 points only in two-dimension, the scheme is truly
second-order accurate at steady state and very close to a genuinely multidimensional upwind
method.

Owing to an efficient implicit treatment, the present scheme allows the use of large CFL
numbers and converges quickly to the steady solutions. For various 2-D aerodynamic prob-
lems, the scheme has produced accurate non-oscillatory solutions without any correction.
Numerical shock profiles are sharp even if they are not aligned with the mesh lines. The
extension of the method to viscous flow problems is in progress.
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